树状数组(BIT)

姓名: 郑皓仁

赛道: 提高组

类型: 算法技能

树状数组(BIT)

关键词: 树状数组, BIT, lowbit

或许更好的阅读体验

什么是树状数组

树状数组是一种码量小,常数小,支持单点修改区间查询的数据结构。

树状数组维护的信息和运算需要满足结合律并且可差分

注意gcd和max操作虽然满足结合律,但不可差分,因此不能使用树状数组维护

其实,树状数组能做的,线段树都能做,线段树能做的,树状数组不一定能做,但线段树码量大,常数大,不像树状数组,码量小,常数小, ~适合我这种懒人使用~。因此还是要学的,毕竟谁都不想再考场上手打一个线段树。

进过一些操作后树状数组也可以支持区间查询和单点修改,这个我们待会再说。

如何实现

引入

让我们先来看一个问题:

给定一个序列,满足以下操作

  1. 将某一个数加上一个值
  2. 查询 lr 的和

假设你还没学过线段树和树状数组,你会怎么做这道题。

显然有两种方法

方法1:直接模拟,修改 O(1) ,查询 O(n)

方法2:前缀和,修改 O(n) ,查询 O(1)

然而,如果操作次数很多序列又很长的话上面的做法就显得有些无力了,这时我们就需要使用树状数组来解决这个问题。

树状数组计算 a_1+a_2+a_3+a_4+...+a_n 是把它们拆成不超过 \log n 段进行计算,这样我们只需要合并 \log n 段区间就能够计算出结果,相比于暴力效率有很大的提高。下面是一张简图,生动的展示了树状数组的工作原理。

114514

最下面的八个方块表示原始数组,上面的方块就是c数组,用来存放某一段区间的和, 这些信息是已知的,我们可以把前缀和拆成这些小区间来计算。

从图中可以看出, c[i] 存的是以 i 为右端点的一段区间的和,让我们先不管左端点,来感受一下树状数组是如何查询的。

例如我们要查询 [1,7] 的区间和。就会从 c[7] 开始跳,先将答案加上 c[7] ,发现 c[7] 计算的是 [7, 7] 的和,于是我们跳到 c[6] ,发现 c[6] 算的是 [5,6] 的和,所以我们跳到 c[4] ,并将答案加上 c[6]c[4] 算的是 [1,4] 的和,我们将答案加上 c[4] ,但此时前面已经没有可跳了,所以过程结束,返回答案。

如果我们要查询 [4, 7] 的和怎么办呢,我们可以利用前缀和的思想,用 [1,7] 的和减去 [1,3] 的和就好了。

区间大小

现在我们来考虑左端点在哪里。

在树状数组中,我们规定 c_x 的存的是 [x-\operatorname{lowbit}(x)+1, x] 的和。 \operatorname{lowbit}(x) 指的是 x 这个数在二进制下最低位的1的位权。

我们要如何计算 \operatorname{lowbit}(x) 呢。根据位运算知识得, \operatorname{lowbit}(x) = x\ \& -x ,有人肯定要问,为什么? 下面是一段摘自oiwiki的解释,可能可以帮助理解。

将 x 的二进制所有位全部取反,再加 1,就可以得到 -x 的二进制编码。例如,6 的二进制编码是 110,全部取反后得到 001,加 1 得到 010。

设原先 x 的二进制编码是 (…)10…00,全部取反后得到 […]01…11,加 1 后得到 […]10…00,也就是 -x 的二进制编码了。这里 x 二进制表示中第一个 1 是 x 最低位的 1。

(…) 和 […] 中省略号的每一位分别相反,所以 x & -x = (…)10…00 & […]10…00 = 10…00,得到的结果就是 \operatorname{lowbit}

代码实现:

int lowbit(int x){
    return x & -x;
}

区间查询

回顾一下刚才举的例子,不难想出查询前缀和的方法,我们写出计算 [1, x] 的和的过程。

  1. ans 加上 c_x
  2. x 减去 \operatorname{lowbit}(x)
  3. 判断 x 是否为 0 ,不是就回到第1步,否则返回 ans

代码实现:

int sum(int x){
    int res = 0;
    while(x){
        res += c[x];
        x -= lowbit(x);
    }
    return res;
}

那么我们可以写出查询 [l, r] 区间和的代码

int query(int l, int r){
    return sum(r) - sum(l-1);
}

区间查询部分完结。

单点修改

修改一个值其实只需要把管辖了 a_xc_y 找到并修改即可,那我们怎么找到管辖了 a_xc_y 呢?

显而易见的, c_x 管辖了 a_x 。在之前的那副简图中可以看出 c[x]c[x+\operatorname{lowbit}(x)] 包含。

于是我们就有了一种找的方法,假设要把 a_x 加上 y , 下面给出过程。

  1. c_x 加上 a_x
  2. x 加上 \operatorname{lowbit}(x)
  3. 如果 x 大于 n 那么退出,否则回到第1步。

代码如下:

void modify(int x, int y){
    while(x <= n){
        c[x] += y;
        x += lowbit(x);
    }
}

建树

可以直接转换为 n 次单点修改。

代码如下:

for(int i = 1; i <= n; i++){
    int x;
    scanf("%d", &x);
    modify(i, x);
}

完整代码

#include<bits/stdc++.h>
using namespace std;
int n, m, c[1000010];
int lowbit(int x){
    return x & (-x);
}
void modify(int x, int y){
    while(x <= n){
        c[x] += y;
        x += lowbit(x);
    }
}
int sum(int x){
    int res = 0;
    while(x >= 1){
        res += c[x];
        x -= lowbit(x);
    }
    return res;
}
int query(int l, int r){
    return sum(r) - sum(l-1);
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++){
        int x;
        scanf("%d", &x);
        modify(i, x);
    }
    for(int i = 1; i <= m; i++){
        int opt, x, y;
        scanf("%d%d%d", &opt, &x, &y);
        if(opt == 1){
            modify(x, y);
        }else{
            printf("%d\n", query(x, y));
        }
    }
    return 0;
}

好了,你已经学会了基础的树状数组,接着我们来学习如何让树状数组支持区间修改单点查询

区间修改单点查询

题目:【模板】树状数组 2

我们发现如果树状数组维护的是原本的数组则无法实现,考虑维护差分数组。

我们知道在如果要将 [l, r] 的所有数加上 x 的话,只需要在差分数组的第 l 位加上 $x$,再在第 r+1 位减去 x 即可。

而查询第 x 个数是多少其实就是计算差分数组前 x 个数的和。这两个操作树状数组都可以实现,于是我们就做完了。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n, m, a[1000010], b[1000010], c[1000010];
int lowbit(int x){
	return x & (-x);
}
void modify(int x, int y){
	for(int i = x; i <= n; i += lowbit(i)){
		c[i] += y;
	}
	return ;
}
int query(int x){
	int res = 0;
	for(int i = x; i; i -= lowbit(i)){
		res += c[i];
	}
	return res;
}
int main(){
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; i++){
		scanf("%d", &a[i]);
		b[i] = a[i] - a[i-1];
		modify(i, b[i]);
	}
	while(m--){
		int opt;
		scanf("%d", &opt);
		if(opt == 1){
			int l, r, x;
			scanf("%d%d%d", &l, &r, &x);
			modify(l, x);
			modify(r+1, -x);
		}else if(opt == 2){
			int p;
			scanf("%d", &p);
			printf("%d\n", query(p));
		}
	}
	return 0;
}

好了,现在你已经学会了基本的树状数组,来做几道例题吧

例题

例题1:[CQOI2006] 简单题

题目链接

这是一道树状数组板子题,只需要把区间修改单点查询的加法改为异或就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
int n, m, c[100001];
int lowbit(int x){
	return x & (-x);
}
void add(int x){
	for(int i = x; i <= n; i += lowbit(i)){
		c[i] ^= 1;
	}
}
int sum(int x){
	int res = 0;
	for(int i = x; i; i -= lowbit(i)){
		res ^= c[i];
	}
	return res;
}
int main(){
	scanf("%d%d", &n, &m);
	while(m--){
		int opt, l, r;
		scanf("%d%d", &opt, &l);
		if(opt == 1){
			scanf("%d", &r);
			add(l);
			add(r+1);
		}else{
			printf("%d\n", sum(l));
		}
	}
	return 0;
}

例题2:HH的项链

题目链接

首先,如果一个贝壳反复出现,那我们只要关注它出现的某一个位置而忽略其他位置,显而易见的,我们可以关注最右边的位置,因为好更新。

既然关注右边的贝壳,那么我们就要从左到右的处理数组,注意到这题不强制在线,于是我们可以离线后按照右端点排序,这样保证了右边的数是按顺序更新的。

查询的时候利用前缀和思想即可。

下面引入一个数组 visvis_i 表示第 i 种贝壳在目前询问的区间内最后出现的位置。还有一个名叫 last 的变量,意思是还没修改区间的左端点,每次更新从它开始。

我们写出修改部分的代码:

    int last = 1;
    for(int i = 1; i <= m; i++){
        for(int j = last; j <= q[i].r; j++){
            if(vis[a[j]]) modify(vis[a[j]], -1);//如果之前有这个数就先把它删掉
            modify(j, 1);//用新的位置代替
            vis[a[j]] = j;//修改vis数组
        }
        last = q[i].r+1;//更新last
        ans[q[i].id] = query(q[i].r) - query(q[i].l-1);
    }

总代码,可以配合理解:

#include<bits/stdc++.h>
using namespace std;
namespace qwq{
	inline int read(){
		int n = 0;  
		int f = 1;
		char c = getchar();
		while(c < '0' || c > '9'){
			if(c == '-') f = -1;
			c = getchar();
		}
		while(c >= '0' && c <= '9'){
			n = (n << 3) + (n << 1) + (c ^ 48);
			c = getchar();
		}
		return n * f;
	}
	inline void Write(int x){
		if(x < 0){
			putchar('-');
			x = -x;
		}
		if(x > 9) Write(x / 10);
		putchar((x % 10) ^ 48);
		return;
	}
	inline void write(int x, char c){
		Write(x);
		putchar(c);
	}
}
using namespace qwq;
struct node{
    int l, r, id;
    bool operator < (const node &A){
        return r < A.r;
    }
} q[1000010];
int tree[1000010], n, m, a[1000010], vis[1000010], ans[1000010];
int lowbit(int x){
    return x & (-x);
}
void modify(int x, int y){
    while(x <= n){
        tree[x] += y;
        x += lowbit(x);
    }
}
int query(int x){
    int res = 0;
    while(x){
        res += tree[x];
        x -= lowbit(x);
    }
    return res;
}
int main(){
    n = read();
    for(int i = 1; i <= n; i++){
        a[i] = read();
    }
    m = read();
    for(int i = 1; i <= m; i++){
        q[i].l = read(), q[i].r = read(), q[i].id = i;
    }
    sort(q+1, q+m+1);
    int last = 1;
    for(int i = 1; i <= m; i++){
        for(int j = last; j <= q[i].r; j++){
            if(vis[a[j]]) modify(vis[a[j]], -1);
            modify(j, 1);
            vis[a[j]] = j;
        }
        last = q[i].r+1;
        ans[q[i].id] = query(q[i].r) - query(q[i].l-1);
    }
    for(int i = 1; i <= m; i++){
        write(ans[i], '\n');
    }
    return 0;
}

这道题还有一个莫队做法,感兴趣的读者可自行了解。

结语

上面就是我的总结和笔记,这里其实还有很多技巧没有讲到,例如扫描线等,之后可能会补充。还有树状数组虽然代码短,但适用范围小,线段树还是要学的。让我们一起,向着神犇的路进发。

3 个赞

既然都讲树状树状了,怎么不讲讲线段树呢(doge

线段树板子已经写烂了,树状数组根本不想写

我比较懒,不想打线段树,而且我认为树状数组比线段树好调,学起来更简单

或许你可以写写二维线段树?

常数死人。

借楼宣传