焦翊洋
                (༺ཌༀཉིXYD༃ༀད༻)
              
                
              
                  
                  
              1
              
             
            
            
              
              
              73 个赞
            
                
           
          
            
              
                王泽通
                (wzt2012)
              
              
                  
                  
              4
              
             
            
              都是我玩剩下的
\begin{gathered}
\textbf{KaTeX 入门}\kern{230pt}\text{fixed by AC_code} \cr
\boxed{\begin{aligned}
&\kern{15pt}
    \begin{aligned} \cr
    &\text{先假设你有一个简单的公式。}\cr
    &f(x)=\begin{cases}
        f(x-1)+f(x-2) & x\geq 3\cr
        1 & \text{Otherwise.}
    \end{cases}\cr
    &\text{假设现在有人又给了一个公式。}\cr
    &g(x)=\begin{cases}
        g(x-1)+f(x) & x\geq 2\cr
        f(1) & \text{Otherwise.}
    \end{cases}\cr
    &\text{现在,看一看你所写的公式的码量。你会发现你的KaTeX技能提升了。}\cr
    &\text{也就是说,只要多写写公式你的水平自然会提升。}\cr
    \cr
    &\text{这就是公式的基本写法了。}\cr \cr
    &\text{那么,现在你已经对KaTeX的基本用法有了一定的了解,就让我们来看}\cr
    &\text{一看下面这个简单的例子,来把我们刚刚学到的东西运用到实践中吧。}
    &\underline{\kern{310pt}}\cr
    \end{aligned}\cr
    &\kern{10pt}\boxed{\stackrel{\normalsize\quad\textbf{试试看!}\quad}{\normalsize\quad\text{例题 1.8}\quad}}\cr
    &\begin{gathered}
        \kern{5pt}\log \Pi(N)=\Big(N+\dfrac{1}{2}\Big)\log N -N+A-\int_{N}^{\infty}\dfrac{\overline{B}_1(x){\rm d} x}{x}, A=1+\int_{1}^{\infty}\dfrac{\overline{B}_1(x){\rm d} x}{x} \cr
        \log \Pi(s)=\Big(s+\dfrac{1}{2}\Big)\log s-s+A-\int_{0}^{\infty}\dfrac{\overline{B}_1(t){\rm d} t}{t+s}
    \end{gathered}\cr
    &\kern{5pt}\begin{aligned}
        \log \Pi(s)=&\lim_{n\to \infty}\Big[s \log(N+1)+\sum_{n=1}^{N}\log n-\sum_{n=1}^{N}\log(s+n)\Big]\cr
        =&\lim_{n\to \infty}\Big[s \log (N+1)+\int_{1}^{N}\log x {\rm d} x-\dfrac{1}{2}\log N +\int_{1}^{N}\dfrac{\overline{B}_1{\rm d} x}{x}\cr
        &-\int_{1}^{N}\log(s+x){\rm d} x-\dfrac{1}{2}[\log(s+1)+\log(s+N)]\cr
        &-\int_{1}^{N}\dfrac{\overline{B}_1(x){\rm d} x}{s+x}\Big]\cr
        =&\lim_{n\to \infty}\Big[s\log(N+1)+N\log N-N+1+\dfrac{1}{2}\log N+\int_{1}^{N}\dfrac{\overline{B}_1(x){\rm d} x}{x} \cr
        &-(s+N)\log(s+N)+(s+N)+(s+1)\log(s+1)\cr
        &-(s+1)-\dfrac{1}{2}\log(s+1)-\dfrac{1}{2}\log(s+N)-\int_{1}^{N}\dfrac{\overline{B}_1(x){\rm d} x}{s+x}\Big]\cr
        =&\Big(s+\dfrac{1}{2} \Big)\log(s+1)+\int_{1}^{\infty}\dfrac{\overline{B}_1(x){\rm d} x}{x}-\int_{1}^{N}\dfrac{\overline{B}_1(x){\rm d} x}{s+x}\cr
        &+\lim_{n \to \infty}\Big[s\log(N+1)+\Big(N\dfrac{1}{2}\Big)\log N\cr
        &-\Big(s+N+\dfrac{1}{2}\Big)\log(s+N)\Big]\cr
        =&\Big(s+\dfrac{1}{2}\Big)\log(s+1)+(A-1)-\int_{1}^{\infty}\dfrac{\overline{B}_1(x){\rm d} x}{s+x}\cr
        &+\lim\Big[s\log\dfrac{N+1}{2}-\Big(N+\dfrac{1}{2}\Big)\log\Big(1+\dfrac{s}{2}\Big)\Big]
    \end{aligned}
\end{aligned}}\cr
\color{black}\textbf{假如让写KaTeX的那些人来出教程}
\end{gathered}
             
            
              
              
              19 个赞
            
           
          
            
              
                郑涞允
                (菜虚捆)
              
              
                  
                  
              5
              
             
            
            
              
              
              19 个赞